

CASES BOTH MEN & WOMEN 228,190 159,48	GROUP	NEW	DEATHS
BOTH MEN & WOMEN 228,190 159,48		CASES	
	BOTH MEN & WOMEN	228,190	159,480
MEN 118,080 87,260	MEN	118,080	87,260
WOMEN 110,110 72,220	WOMEN	110,110	72,220

	INCIDENCE = N	EW CASES PEI	R YEAR
CANCER SITE	US Cases per 100,000	VT Cases per 100,000	VT CASES Per year
Lung	60.0	72.6 (+ 21%)	530
Prostate	159.9 (M)	141.9	506
Breast	127.6 (W)	131.5	514
Colon	44-3	41.9	306

I

LUNG CANCER SCREENING Early Efforts Were Not Effective

- * Annual Chest X-ray
- * Sputum Cytology
- * Conventional Chest Computed Tomography Scan
- * Some increase in number of cancers found
- * No increase in survival
- * Flaws in study design
- * Small numbers of participants
- * Short observation period

CATEGORY	LDCT	CXI
Participants	26,722	26,73
Positive Results	18,146	5,04
Positive Percent	24.2%	6.9
Positive Result =>1 over 3 yes	ars 39.1%	16.0
False Positive Results (#)	17,497	4,76
False Positive Results (%)	96.4%	94.5

CATEGORY	Прст	CXR	
Lung Cancer Number	1.060	941	
Lung Cancer Rate / 10^5 person-years	645	572	+ 13%
Lung Cancer Deaths	346	425	
Cancer Death Rate / 10^5 person-years	247	309	P=0.004 - 20.0%
All-Cause Deaths	1,877	2,000	P=0.02
			- 0.7%

CATEGORY	LDCT	CXR
Participants	26,722	26,732
Positive Results	18,146	5,043
Positive Percent	24.2%	6.9%
Positive Result =>1 over 3 years	39.1%	16 .0 %
	\sim	
False Positive Results (#)	17,497	4,764
False Positive Results (%)	96.4%	94.5%

LUNG CANCER SCREENING: HOW LOW DOSE CT SCAN (LDCT)

EXPOSURE	RADIATION DOSE
Natural Exposure	3 mSv / year
Fransatlantic Flight	0.10 mSv
Chest X-ray	0.07 mSv
ow-Dose Chest CT	< 1.00 mSv
Chest CT + Contrast	5.00 mSV
Abdomen CT Scan	8.40 mSv

WHAT WOULD LUNG CANCER SCREENING ACHIEVE IN VERMONT?

- * 7,200 SUBJECTS SCREENED
- * Observation for 5 years = 36,000 person years
- * Assume NLST results:
- * No screening (CXR) = 309 deaths / 100,000 person years
- * LDCT screening = 247 deaths / 100,000 person years
- * In the cohort who would have screening:
 - * No Screening = 111 lung cancer deaths
 - * LDCT Screening = 89 lung cancer deaths

SCREENING COULD SAVE 22 LIVES EVERY 3-5 YEARS

WHAT WOULD LUNG CANCER SCREENING COST FOR VERMONT?

SCREENED \$300 \$500 \$700 5,000 \$1,500,000 \$2,500,000 \$3,500,000 7,200 \$2,160,000 \$3,600,000 \$5,040,000 10,000 \$3,000,000 \$5,000,000 \$7,000,000
5,000 \$1,500,000 \$2,500,000 \$3,500,000 7,200 \$2,160,000 \$3,600,000 \$5,040,000 10,000 \$3,000,000 \$5,000,000 \$7,000,000
7,200 \$2,160,000 \$3,600,000 \$5,040,000 10,000 \$3,000,000 \$5,000,000 \$7,000,000
10,000 \$3,000,000 \$5,000,000 \$7,000,000
COST TO TREAT FARLY STAGE (1.8.11) - \$60.000
COST TO TREAT LATE STAGE (III & IV) = \$120,000

Is lung cancer screening a "better public health investment" than smoking prevention?

LUNG CANCER SCREENING CHALLENGES: Information Resources Information for providers – why, who, how, where? Resources for providers - scheduling, reporting, follow-up; Information for high-risk subjects – why, how, where, when? Acquire accurate tobacco exposure history from subjects;

 Manage information about high rate of false-positive scans vs low true-positive rate;

LUNG CANCER SCREENING CHALLENGES: Radiology Resources

- Establish workable, uniform low-dose CT scan protocols
- * Develop expertise among radiologists to read LDCT scans
- * Establish clear, understandable, uniform reporting vocabulary
- * Establish clear, uniform, minimally invasive protocols for "positive" LDCT scans

LUNG CANCER SCREENING CHALLENGES

- * Develop and oversee performance quality measures
- * Achieve fair value payment for LDCT scans from payers / avoid case-by-case pre-authorization
- * Identify funding for LDCT scans; costs for screening long before savings from early detection
- Identify funding for administration and coordination of the lung cancer screening program

LUNG CANCER SCREENING OPPORTUNITIES

- Develop additional tests to improve the specificity of LDCT screening:
 - * Blood Tests
- * Urine Markers
- * Exhaled Breath Compounds
- * Demographic Features

GOAL: Reduce the high false-positive rate!

LUNG CANCER SCREENING OPPORTUNITIES

- Evaluate effectiveness of health information materials
- * Providers / provider support staff
- * Subjects (gender / education / income / ethnicity)
- Media (print / internet / video / social media)

LUNG CANCER SCREENING OPPORTUNITIES

Refine the inclusion criteria to maximize benefit vs risk / cost:

- * Age range (currently 55 80 years)
- * Smoking exposure (currently 30 pack-years)
- * Time since smoking cessation (currently 15 years)
- Develop screening criteria for high-risk groups beyond smokers:
 - * Asbestos exposure
 - * Radon
 - Family history

LUNG CANCER SCREENING OPPORTUNITIES

- * Link screening events to smoking cessation programs;
- * Link screening events to COPD detection / treatment;
- * Use screening cohort as a source for lung cancer research materials:
 - * Blood / urine / exhaled breath
 - * Tumor tissue
 - * Radiology images
- * Genetic analysis

